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The system of equations, describing the behavior of a two-temperature (ion 
temperature unequal to electron temperature) fully-ionized plasmaD],appears 
very complicated for the solution of concrete problems, 

In the equation of motion, In addition to ion viscosity, there also enters 
the electron viscosity, which is usually neglected for a one-temperature 
plasma (ion temperature equal to electron temperature). The problem is 
strongly complicated by the anisotropy of the transport coefficients, which 
we must consider when OiZi 2 f, me%, 3 1; here IJJ, and m, denote the cgclo- 
tron frequencies of the electrons and ions, and 7, and 7, denote the mean 
collision times” of the electrons and ions. Thus, instead of two thermal 
conductivity coefficients for the ions and electrons and an electrical con- 
ductivity, we must now write three thermal conductivltles for the electrons, 
three for the lona, and three electrical conductivlties. Viscosity In this 
case is defined by five coefficients for the electrons, five for the ions, 
and ten second-rank viscosity tensors for the ions and electrons. 

In the present paper, we shall estimate the different terms in the equa- 
tions in order to simplify them. We write the values of the various criti- 
cal parameters, for which various simplifications may be made (i.e. neglec- 
ting the anlsotropy In the transport coefficients, the viscosity of the elec- 
trons In the equation of motion or in Ohm’s law, etc.). It turns out that 
for certain values of these parameters, the viscous terms must be kept in 
the Ohm’s law, so that Ohm’s law becomes a differential equation and not 
.iust an algebraic relation. Also possible are case3 when electron viscosity 
should be considered In the equation of motion while the ion viscosity may 
be neglected, etc. Most of these phenomena are connected with two-temperature 
plasmas and do not appear in one-temperature plasmas. 

1. The 8$mam of l qu8tlonr for a fully ionbad tw0-ta8prr*tur. Pl88mr. 
We shall consider a fully ionized plasma, consisting of two components, ions 

and electrons. For definiteness, we assume that the ions are singly ionized. 

ln [II, the following system of equations was obtained describing the behav- 

ior of such plasmas: 

1036 



me equatloM Of II fully 1OnlZCd two-temperature plasma 1337 

dev,a ape an,4 
--_-- mene dt = ax, axa en (& + $ (v, x H).) i- & 

(1.2) 
4vi= 8Pi an,@ 

mini dt -= --- -- +en(Ea+~(vixH),)-Rk 
% $2 

-gn, de*, 
7 i- ps div V, = - div Q# - neas az ‘5 + Qc 

+ni 
4 *i 
dt -k pi div V$ = - div qi - JZ~~P z + Qi 

(1.3) 

P 

Here n is the number of particles per unit volume, v the velocity, m 

the particle mass, p and n the pressure and viscous stress :ensor, e the 

proton charge, R and R the electric and magnetic fields, T the temper- 

ature, R the force of lnteractlon on the electrons by the Ions, q the 

heat flux with known components. Subscript e refers to electron quantities, 

subscript t to ion quantities. 

Qe = -Ru - Y P’e - T,), Qi = y V, - T,), (1.4) 

y = 3m,n, / mir,, u = v, - vi 

R, = - allull - alul -‘a, u xh, h=HIH 
R = &+RT, 

RT= -~,,“Tv,,T,-~~~=v~T~-~~~~~ x VT, 
(1.5) 

qe“ = Ba=“u,, + BITUuI +P_=“hxu 

qe = q” + qeT, qe= = - ~~~~~~~ Te - xIevLJ”e - xAeh x VT, (1.6) 

qt = - x,,“~7,,Ti -qiplTi +xhi h x vTr 

The form of the tensor =a~ and the coefficients c, 8, X, r) are given 

In [l] (Formulas (4.30) to (4‘.45)). 

The symbols 11 and 1 on vectors denote the components of the vectors 

taken along the perpendicular to the magnetic field direction. 

In the derivation of these equations, we have used the fact 

.E~ = a/2 niTi, c,j --. 3j2 

where c is the Internal energy per unlt volume, and o, Is the specific 

heat per molecule. 

To close the system, we must add the equations of state for the electrons 

and Ions p, - n,P. and pI = n, T, and Maxwell’s equations 

4n 
rot H = c j, rot E = - fz 

div H = 0, div E = 4~~3 (1.7) 

Ir what follows, without loslng generality, we shall assume plasmas as 
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being quasi-neutral, n,b n,= n . 

2. Mlotropy of the tramport oorftioi(lntm, First of all, it is possi- 

ble to simplify the expressions for the transport coefficients appearing in 

Formulas (4.30) to (4.45) cl], and thus, also the expressions for the fluxes 

R and 0. Prom these formulas, it is clear that the coefficients n, c, 

Bt n depend on ~1.7, and UI% 71 , 

The conductivity of the medium, a , defined by the usual formulas 

d{[ = e%zs I a,i, i7,, =e2n2 I a It 6, =e2rlz i a, 

also depend on ~1.7, , 

The dependence of the transport coefficients on W,T, and ~1~7, is called 

the anlsotropy of the transport coefficients. As Is readily seen, when 

w,?,, < 1 and u)* 7% ( 1 , the anlsotropy Is not significant, and the trans- 

port coefficients are obtained from BormuIas (4.3O)to (4.45) of” Cl], with 

u1,r.=O for ~1.7, Ql and w17%=0 for W,T, 41 . When W,T. Q 1 and 

w171 < I , the viscous stress tensors for the ions and electrons become par- 

ticularly Timple. Instead of the five viscous coefficients for the electrons 

and five for the Ions, there remain only four coefficients in all, two for 

the electrons and two for the Ions. 

We shall clarify for which values of the macroscopic parameters the quan- 

tities ~‘7, and u)$ 7, become small. The expresslons for w, 7, and wt 7, 

are well known [l] . 

h = 23.4- 1.15 1-n. + 3.45iol T, 

The values T* and T, , for which W, 7, = 1 and 

u)~T~= 1 , may be found from Equation (2.1) and 

will be denoted by’ T,* and T,* respectively. 

We can ‘find the explicit expressions for T: and 

if we neglect the influence of the dependence 

on T’. ; this approxlmatl<n is valid for 

a small range of varlatlon of T, round T,r iev. 

In the T,, P, plane (f&.1), we draw the 

straight lines T,= T. * and T, = TIP . ‘pfiis gives 

us four regions. Inregion (l), w,T, < 1 and 

w,T,< I, and the anlsotropy in the transport coef- 

ficients may be completely neglected. In region 

(2), u&&7,< 1 and w%T%> 1 , we may neglect the 

anisotropy in the transport coefficients for the 
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electrons, while in region (4), uj.7, > 1 and UJ,~, c 1 , those for the 

ions. 21 fe@on (31, UI.T,>~ and ruiri=-l, we must consider the aniso- 

trcpy in the transport coefficients for bath the electrons and the ions. 

The form of the transport coefficients to be used in each of the regions 

(1) to (4) are given by (4.30) to (4.45) In [I], which as indicated above, 

simplify drastically when W,T, 6 I and wi 7* Q 1 , and also when u),?. V 1 

and W,T, >l . 

In the latter case, we must set in Formulas (4.30) to (4.45) UJ, T, - m and 

tu$ Tt -+ - * 

We note that in the case of a one-temperature plasma 

O#r,lolti = (mi I 2m,)'fz 

Thus for W,T, of the order unity or even greater than unity, wI 7% remains 
smaller than unity. In a two-temperature plasma with large 27,, the quan- 
tity u)% rl may exceed ~1.7, . 

3. EatLarti.oPr oi torrm M the rqu8tlonr of moMon. Instead of variables 

n,, n:, V,t V,, it Is convenient to introduce the density p , mean Velocity 

V , and current j , as is usually done with one-temperature plasmas. 

P = %ne f mini, pv = nz,n,ve -I- minivi, j = en (Vi - Ye) (3.4) 

In what follows, we shall consider that mi J me E m > 1. (We note that 

the plasma equations In [l] were also written for this case)* AddIng Equa- 

tlons (l.l), and also Equations (1.2), we obtain (*) the equations for p 

and v 
s + div pv = 0, ‘$ + div pvv= =. - $ fpe _tpi) _ 

a 

- T$ 8( z,~P + a@) + $ j x H - div pe u ua (3.2) 

We estimate the terms appearing in Equation (3.2). To this end, we intro- 

duce the characteristic parameters: dimension s , velocity V , problem 

time T , characteristic problem frequency n = V/L , current I , and also 

the nondimensional difference 

1 vi - v,~/v~I/enVr u 

We shall consider that the order of the Inertial term and that of the 

viscous forde, the pressure term, and the diffusion term div paun all do 

*) We note that the sums p,+ p, and R, t n, In general., are not aquaI to 
the total pressure and viscous stress of the mixture p and n S since in 
defining pa a IT, and Ipi, the random velocity of the Jth qo_g@opent has been 
taken to be -V?s = Vi - v., rather than ?? *G’V=-- % (here lVs,Vj, V are fes- 
pectlvely the true velod%ty of the Jth type particle, the mean velocity of 
the jth type particle and the mean velocity of the mixture) 123. 

Conslderatlon of this difference between the viscous ti thermal pres- 
sures in terms of Vjx and fl,will be made only for extreme accuracy. 'Phi8 
YVdue to the fact that the equations a8 now’written are correct when 

- v*,j 6$ ssT, the electron thermal velocity. 
randdom velocity +vx* is used in defining 

We aleo note that tf the 
p 

does not appear in the equation of motion 
the term divp, u.@ 
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not exceed the order of the electromagnetic force; 

of the electromagnetic force on the medium will be 

follows that 
\ div pe u u I < $ljxHl, 

otherwise, the lnf luence 

neglected. Prom this, it 

(3.3) 

Idivpvv]s$ljxHj, U>-&, $crnlh 

We note that 5_n the case 1 div PIN I -& 1 WI 1 / C ( u > 52 / mi), the inertial 
term may be omitted in the equation of motion. In this case, the equation 
of motion reduces either to the magnetohydroatatlc case (if viscous forces 
are smaller than electromagnetic forces), or to the magnetohydrodynamic 
%;%z~;)equatlon (If the vlecoua forces are comparable to the electromagnetic 

. 

We should clarify when the diffusion term may be ne lected in the equation 
of motion. It is easily seen that p,uu / div pw = CL-1 When u < m’!s 
the diffusion term dlv p.uU may be neglected in the equation of motion, 
which In this case coincides with the equation of motion in ordinary magneto- 
hydrodynamics. When 

IY 
- m’f’ , the diffusion and Inertial terms are of the 

same order, and depen lng on the particular problem, they either both remain 
in the eauation. or both are omitted when ComDared with other terms. When 
u > q”a a- the inertial term may be olnitted in-the equation of motion, which 
then reduces either to the magnetohydrodynamic Stokes equation, or to the 
equation of magnetohydroatatlcs. For the eetlmation of the term dlv p.uu, 
it is necessary In the last two casg. to comme it either with the viscous or 
the electromagnetic terms. 

When v,/V~<m, Vi= v, I.e. the mean velocity is approximately equal 
to the mean velocity of ions. Thls inequality does not violate the gener- 
ality; for the sake of definiteness we shall use It below. 

In the derivation of Equations (1.1) to (1.3) [l], it was assumed that 

lU1~1~,-v{I~V,~,where VeT 13 the termal velocity of the electrons. 

using this Inequality, we obtain the estimate 

I dfv ~eW--~s(vc -v#/L <( nm,v,T / L - nT, / L = pa / L (3.4) 

We estimate the terms In the equation of motion, when the order of the 

term 1 VP,, 1 -pps /L, I.e. the change of p. over the characteristic length 

is of the order of p.. 

We’note that when 1 div PW I- 1 V p.,/ , such 8 large variation In p 
Thus by (3.4) 

is pos- 
sible only with significant changes In the velocity. the term 
div a_uu mav be nenlected In the eauatlon of motion. In case the Sum of 
the ‘r&&.n& terms-on the right-hand side has the order dlv p.uU , then 
the internal term has the same order. Then to a first approximation the 
inertial term may also be omitted In the equation of motion. If, in addltlon, 
the vlacous term Is smaller than the pressure force, then the equation of 
motion reduces to magnetohydrostatics; if viscous and pressure forces are 
of the same order, it reduces to the magnetohydrodynamic Stokes equation (or 
to the simple hydrodynamic Stokes equation If the electromagnetic forces are 
smaller than the pressure forces). 

It is easily seen that 

\ div pe uu 1 <.c-’ 1 j x H 1, UQloi((m when ivPeI-Pe/L (?L5) 

From (3.3) and (3.5) follows 51 / wig m”g* 

It Is not difficult to show-that 
FJn 

the case when ( Vpc I- Pe IL* 
1Vp j-pi/L, the ratio Idlvn,\/i pal and (divnij/]Vpi\ are equallnorder 

to t h e quantities 7, /T CZ$ 1 and I{ JT (( 1. In other words, the viscosity may 
be neglected In the equation of motion in this case. As metloned above, this 
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is valid only for sufficiently large velocities. 

We compare the order of the viscous terms TT, and ni To this end, we 

write the expressions for a&“, and JQxz for definiteness; we shall do this 

for the case when the magnetic field is parallel to the s-axis: 

qu: = - qo’ 1 3 div v - %) - ql’ (2 _ 2) _ q3i (2 + 2) 

fl,= = - 
r108 ( 

-& div v -%+Gdivu-‘$)- 

( 
au, avv au, 

-w ~-~+Jyy$/ 

(3.6) 

The remaining terms of the viscous tensors have the same order as the term 
nxr. We note that for any u), 7, among the five Ion viscosity coefficients 

there always exists at least one (n ’ ), whose order (cf. Section 4 of [1] ) 
Is greater or equal to the order of ?he other viscosity coefficients 

x” 
i-s$‘iri- The same may be said for the electron viscosity coefficients, 

w lch In order, are smaller or equal qce- n,T&. 

In what follows, we differentiate two cases. Case (A), when u<i, SO 

fd / CO*& i(3.3). Then in the expression for n. the order of au’/ axk 

will be smaller or the same as that of dvl / axk. 

Case (B), when u>> 1, in which case ~/uJ~ may be arbitrary. In this 

case, the order of n. is determined by the terms &,l / dxk. 

Let us estimate the order of C/u, for a typical flow of a conducting 

medium in a channel. Let V= lCFcm/sec , L = 100 cm , H = legauss, then 

R = V/L _ 103sec-1, u),a 10esec-l, C/U,- UY6 ( 1. From thls,lt Is clear 

that in many cases of practical Interest, the inequality C/UJ, < 1 comes 

true. 

Comparing no and ni , according to (3.6) and using Expressions (2.1) 

for 7, and 7% , we obtain that in the equation of motion the electron and 

Ion viscosity is of the same order 

n8 -%ni, when T, - (2rn)‘ja Tg (-4); \T, = (2mUA2)‘/~ Ti (B) 

The straight line 1, described by Equations Te = (2m)‘15 Ti In case (,J) 

and T, =(2mU-2)‘/r TC in case (B), IS drawn in Fig.1. Below this line 

T, < (2m)lls Ti, T, < (2mP)'l~ Ti, fit, < % 

Above this line 

T, > (2m)‘lh Ti, T, > (2rnP)‘l~ Ti, % > % 

Consequently, In two-temperature plasmas with sufficiently high electron 
temperatures, the cases may arise that In the equation of motion the electron 
viscosity must be considered together with the ion viscosity, and sometimes 
It must be considered although the Ion viscosity can be neglected. In the 
case of one-temperature plasmas, the electron viscosity Is usually neglected 
in the equation of motion. As is clear from the estimation procedure, this 
Is justified only when U 4 (‘&) Ia. When II Is of the order of or greater 
than (‘&)‘/t the electron viscosity In order of magnitude may be comparable 
to or exceed the ion viscosity, respectively, and must be included In the 
equation of motion. 
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As shown above, the order of the viscous terms must not exceed that of 

the electromagnetic terms. 

1 div (n, + ni) 1 4 c-l I j x H 1 (3.7) 

In the case when 1 div (n, + fii) I< Cm1 lj_XHI, the viscous terms may be 

omitted In the equation of motion. 

4, ElttitiOn Of tom in th@ ~OAOZWUSO~ Ohm'B l&w. Adding the first 

equation in (1.2) multiplied by - e/m, and the second equation multiplied 

by e/m, , using (3.1) and taking Info account mif me - m> '9 we obtain 

an equation which Is called the generalized Ohm's law 

‘$+ j divv + (jv) v-(jv) $=svpe-- m+vpi+-$ divn,- 
e * e 

-_divni+e(E+ GvxH)-_jxH-$lL-&RT (4.1) 

The expressions for &,,_ and RT are taken from (1.5). 

We shalt compare the order of the viscous terms 

C, f ) div x, 1 e/ me, C, s ) div JG 1 elm 

In Ohm's law. We can show that 

c, -c,, if IA) Te 
_ (2m-l)'Io Ti, (B) T, = (2m-1 u-2)“6 Ti 

The straight line 2, described by Equations T, =*(2rn-l)‘/,Ti in case 

(A ) and T, = (2m-l Uw2) “ITi In case (B), Is shown in Fig.1. Straight lines 

1 and 2 divide the quadrant into three regions, c,, cz and cg , in which 

(al) (am)‘/5 Ti 4 T,, (2mV2)‘1~ Ti c T, (4.2) 

(az) (2m-‘)“k Ti -@ T, < (2m)‘ll Ti, (2mw1V2)‘/~ Ti (( T, < (2mV2)‘/s Ti 

(as) T, 4 (2rn-l)‘/; Ti, T, G (2m-1U-‘)‘16 Ti 

Thus, in Ohm's law 

\div n, 1 1 div ni 1 
-----ST in region al + U2, 

a, 1 4 1 div ni ( Id 
(4.3) 

in region as 
"Xe 1 me mi 

iv 

In the equation of motion 

ldiv % 1 2 1 div JC~ I in region al, 1 div xi I> I div ZC, Iin region ~2 -I- ~3 (4.4) 

de estimate the order of the viscous terms In Ohm's law (4.1). 

We shall compare the terms div 51, / m,, divlni / mi with the term 

jxH / Cm,,uslng Formulas (3.7) and (4.4). 

In region c3 the term (divn,I~[divniI~lIxHI/C, so 

i Cliv nil / mi (( I j xHl/cm,. 

Consequently, in Ohm's law, 

)div.~,)/m,~l.divniI/mi~Ij>:HI/cm, 
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and the viscous terms need not be considered. 

In region os the term ~d~v~~~~~d~v~~~~l jxHl/c, so 
1 div a, 1 f m, < 1 tjHl I/ Cm,. Consequently, in*OhG*i law, we have 

I div TC( 1 I rni < ( div aid, 1 / m, < 1 j xH ] / cm, 

anci the viscous terms need not be included. 

In region ol the term ~div~~~~div~~l~~ jxHl/C, so 
1 &v % 1 /,m, < j div TE, 1 / m,< 1 j X ff 1 i Cm,- ~o~seq~~~n~ly in Ohm’s law 

1divn~I/rn~~Idivn,I/m,~,1j xH\‘cme 
2% other words, in r-e’gions aa and Q, viscosity should not be considered 

in Ohm’s law (4.1) In region ol, ion viscosity should not be considered in 
Ohm’s raw (4.1). Electron viscosity d.n Ohm’s law must be included or may be 
negleoted in region aI together with the term j XH i c@Gt df ti the equation 
Of motion viscosity is considered (-1 div 3ti 1 G 1 div TC,] - 1 j XH 1 / c). 
Electron viscosity should not be considered in at if in Equation (3.2) vls- 
cosity Is not included (1 div 7Gi 1 6 1 div G 1-s [ j XH f f c)+ 

The order of the inviscld terms in Ohmts law ‘(4.2) is given as follows: 

=ing (4.5)s we compare the terms in Otun’s Law (W 

$-rJT, $dJ~, C6 u 
GgIVTFef c7 u c,’ T, -- , cs 

- - F m-1 
Ct’ e 

Using (3.31, (4.6) may be written in the form 

The characteristic problem time X is much greater than the electron 
mean collision time T,, thus from (4.6), it follows that cs < Cs. Conse- 
quentfy, the terms c, and C, may be omitted in Ohm’s law. In the case when 
1 V& 1 -pe /.h (~~quality (3.5) comes true), the term c, Kc, and may be 

omitted in Ohm's law; if inequalities (3.3) hold, there are cases when C4 
must be considered in Ohm’s law. The term cs* 6 es< CT, thus the term 

Cc!’ may be omitted in Ohm’s law. Usually T, >)Tim-’ and CT' > Cg’ (4.6); 
in case T, ,( Tim-'. the term CT's Cs and may also be omitted in all 
the forms of OhmSs law given below. 
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5. The porrlblr form of Ohm’r law. Using the estimates obtained above, 

we now give the various possible slmpllfled forms of Ohm's law. We first 

consider the case, when the order of magnitude of the current (and conse- 

quently the parameter u ) Is unknown, but the orders cl/u~, and UJ,T, are 

known. Then in comparing terms In Ohm's law, It Is Impossible to use the 

convenient estimates (4.6), and It Is necessary to use estimates (4.7), which 

contain conslderably less Information than (4.6). 

1. Let %G< 1. Then C,Sc,<Cm C,<C, (4.7), the anlsotropy In 
the transport coefficients for the electron motion is absent. The following 
cases are-possible. 

1.1. When Q laiSc$r,; ratio &/Cl, may be arbitrary (4.7). Ohm’s law, 
ln general, assumes the form 

j=a Ej$vxH ( 1 (5.1) 

1.2. When 51 /oi~O,Z,; CS% Ce (4.7). Ohm’s law assumes the form 

j = aE (5.2) 

2. Let w.7.-1 . Then C,SC7Mc 6' The following cases are possible. 

2.1. When 8 /~iS~,~,; the ratio CS/CB may be arbitrary (4.7). More- 
over, in region Q, the viscous term may be of the order C, or C, . The 
term C, may be of order I& when UQ /mi+m (4.6). Ohm's law takes the 
form 

-3(jv) j=Vp,+divn,fen ( 
E&vxH 1 

-$jxH-R,-RRT (5.3) 

2.2 When D /c~*o,z,-_; 0,s C, (4.7). In region a we may have 
c,- c, . The term Ca may be of order CS when' vn/lu, -m (4.6). Ohm's law 
has the form 

- 2; (jv) j =Vpe + div n, + en E - -$jXH-_--RRT (5.4) 

3. Let UI,I-.> 1 . Then CT3 c, (4.7). The terms C, and CS must be 
compared with C,. The following cases are possible. 

3.1. When sl/o,<l; the ratio &/I.?, may be arbitrary (4.7). 
Moreover, In region- a, the viscous term C; may be of order C, . The term 
C1 may be of order c., when vn/w,-m according to (4.6). Ohm's law has 
the form 

-?(jv) j=vp,+divn,+en(E+$vxH)-_jjH--RT(5.5) 

3 .e2: When s2/wip 1; C,? CS.in the region c, the viscous term C, 
may be of order C., . 
according to (4.6). 

The term C, may be of order C, when Vn/(u, -m 
Ohm's law has the form 

- >$jv) j = vpe + div 3t, + enE - f j xH - RT (5.6) 

In the temperature region c2+ ,_,3 the viscous term dlv rr, should not be 

considered In the Ohm's law (5.3) to (5.6). In region a, the electron vls- 

coslty must be considered only when It is also considered in the equation of 

motion. In cases when the inequality UQ / Oi< m (3.5) holds, the term 

m, WI j / e2n should not be included In (5.3) to (5.6). In fact, for these 

conditions, the Ohm's law ln the form of (5.3) was used In [3] to study heat 

exchange In fully ionized two-temperature plasma, moving in a channel with a 

magnetic field. 

In writing Ohm's law, we have used the fact that E may be larger and 
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even much larger than the term v X H/c . If [RI - (v X HI/o, then those 

forms of Ohm's law in which the term V X H/c Is absent, the term E will 

also be absent. 

If the order of magnitude of U and w,r, is known, then using the esti- 

mates (4.6), we may write the forms of Ohm's law In a more definite way. 

4. Let 
possible. 

4.1. 

4.2. 

4.3. 

5. Let 

5.1. 

5.2. 

(we -e 1; then Cl < CT 4 C,, C, 4 CW The following cases are 

When U-c&r,; then &-Cc,. Ohm's law has the form (5.1). 
When u<W,r,; then C5<Ce* Ohm's law has the form 

E = -+[vH] (5.7) 

When U 9 c&r& then c6>c6* Ohm's law has the form (5.2). 

UI,T. - 1 ; then Cc - C, . The following cases are possible. 

When udl; then s/Oi@i (3.3), c,<c,-&c,. Ohm's law takes 
the form (5.7). 

When U-1; then c1<c7h.cs NC,9 '44'7 (4.6). Ohm's law 
assumes the form (here written for 0, -.C,) 

O=VPe+divn,+en R++vxR) i 
-$jXR-R,-RR, (5.8) 

5.3. When U>1; then%<C.~C~~C,. When UQ/ai-rnm. (4.6) 
Ohm's law assumes the form (5.4) 

the 

In the cases when the viscosity is Insignificant and UQ /Q$drnp the 
terms divn,, m,(jg) j / e2n in Ohm's law In the last two casesmustbe omitted. 

6. Let 

6.1. 

6;2. 

6.3. 

o,~,sl;,then G>G. !Che following cases are possible. 

When Ue 1; Ohm's law reduces to the form (5.7). 

When U- 1, c,ec, -Cm c~<cc,. Ohm's law assumes the form 
(here written for C, -0,) 

1 
o= vpe +div& +en E+cvXH -4 jxH - R, (5.9) 

When U,>l; then c7~% c,<cc,. When UQ/@iMrn the term C, 
may be of order C,. Ohm's law assumes the form (5.6) (In this 
case written for C,- C,, 0,-C,). _ 

In the cases when the vlscoslty Is insi~niflcant and UQ /c%<m* the 
terms dlv TT, and m,(jV) j/e% in the Ohm s law (5.9) and (5.6) will be 
absent in the last two cases. 

We note that in estimating the terms 
(nBT, 

It has been assumed that C, - C, 
-VP,). However, the cases c,&C, and Cs>c, are also possible 

in a'boundary layer). In the last case, the term 
(e.g. 

C, must be compared with 
C, or with the term eanE/m,; when the orders are e ual 
(or rejected) In all the Ohm's law forms (Equations 
these other terms are kept (or rejected). 

?5.lj t? (~~~)"e~~%er 

follows E - 10-3L-1gauss 
L - 1c2crn , the terms C, and C, are of same order. 

If B- Iv x HI/c , then E may be omitted from the Ohm's law whenever 
the term v X H /c Is discarded. 

From the estimation procedure, it follows that for sufficiently high elec- 
tronic. temperatures, In certain cases we must Include In the Ohm's law terms 
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connected with the electron viscosity, so that Ohm's law no longer remains 
an algebraic relation, but becomes a nonlinear differential equation. 

In the case of a single'temperature plasma, the estimation of terms in 
Ohm's law has been carried out in [4] under the assumptions of U _ n/w, 
(inertial term and electromagnetic terms of same order) and Z,<ni. For 
temperatures To-T,, the present results give possible simplified forms of 
the equation of motion and of Ohm's law for one-temperature plasma without 
these additional assumptions, and thus do not agree with the results of [4]. 
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